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Longitudinal and transverse dielectric functions are derived from the Vlasov equation with the Lan-
dau ion-electron collision operator. The linear collisional propagator has been computed with the use of
continuous fractions [Phys. Fluids 30, 1353 (1987)]. The model gives results which are valid in all the
frequency and collisionality range. For Maxwellian plasmas, the dispersion relations of Langmuir and
electromagnetic waves are explicitly computed with thermal corrections up to the fourth order. For the
transverse waves, the results obtained are in good agreement with those deduced from the collisional
Dawson-Oberman model [Phys. Fluids 5, 517 (1962)]. A numerical solution of the longitudinal damping
rate is obtained. The dispersion relations for weakly anisotropic plasmas are studied. It is shown in par-
ticular that, for the collisional damping rates, the corrections due to the anisotropic effects are of the

same order as the thermal corrections.

PACS number(s): 52.35.Fp, 52.35.Hr

I. INTRODUCTION

The derivation of the dispersion relations for electro-
magnetic and Langmuir waves throughout the col-
lisionality range has a great importance in laser-plasma
interaction and astrophysics. These dispersion relations
express the frequency w, and the damping rate y as func-
tion of the wave number k. These parameters are very
important data to describe many physical phenomena
(electromagnetic wave absorption, parametric instabili-
ties, etc.). Many works in this field have been reported in
the literature. They can be classified into collisional and
collisionless asymptotic approaches. In the collisionless
limit, by solving the Vlasov-Poisson equations, Landau
[1] established the well-known Landau damping due to
the wave-particle resonant interaction. For Maxwellian
plasmas, the high-frequency collisionless dielectric func-
tion is given by
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where the longitudinal and the transverse parts read
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where Ap=(e,T/ne?)!”? is the Debye length,

v,=(T/m)""? the thermal velocity, w,=(ne’/mey)'"?

the electronic plasma frequency, and w=w,+iy the
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complex frequency of plasma modes. In the collisional
limit many results have been derived for the damping
rate using quantum mechanics [2-4] or classical kinetics
[5-10] formalisms. In each of these studies, the main
purpose was to derive the collisional damping rate. For
the electromagnetic waves, the most important result was
obtained by Dawson and Oberman [7]. This model treats
exactly the momentum exchange between the ion and the
electron components and therefore is valid to describe
high-frequency phenomena [Sec. IIB]. Using kinetic
theories Shkarofsky [8], McBride [9], and more recently,
Jasperse and Basu [10] have shown that the total damp-
ing rate of the electron plasma waves is approximately
the sum of the Landau and the collisional damping rates:
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is the electronic mean free path. In this paper our pur-
pose is to derive exact semicollisional longitudinal
€.(k,0) and transverse er(k,w) dielectric functions in
anisotropic plasmas with the use of the Vlasov-Landau
kinetic equation. In our calculation we use the local ap-
proximation that the spatial inhomogeneity effects are
negligible. Furthermore, we do not take into account the
electron-electron correlations (high Z limit) and hydro-
dynamic ion motion is neglected. The methods for the
semicollisional propagator calculation used in this work
are those derived in Ref. [11] which were previously [12]
employed for the Weibel instabilities analysis in laser-
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created plasmas. To our knowledge, no exact work on
semicollisional dispersion relations, i.e., valid in an inter-
mediate regime, where both collisional and collisionless
damping are simultaneously present, has been reported in
the literature up to now, but only approximate ap-
proaches. Our results describe the continuous transition
between the collisional and the collisionless limit with
respect to the dimensionless parameter kA,. This paper
is organized as follows.

First, we describe in Sec. II the normalized Vlasov-
Landau equation and discuss the approximations used in
our model. Then we analyze the high-frequency validity
of the Vlasov-Landau equation with a brief description of
the Dawson-Oberman model [7]. Section III is devoted
to the derivation of the semicollisional propagators. In
Sec. IV we compute the longitudinal and transverse
dielectric functions. The dispersion relations of Lang-
muir and electromagnetic waves are presented in an ex-
plicit form for Maxwellian plasma in Sec. V. A compar-
ison with the Dawson-Oberman model is also performed.
In Sec. VI the contribution of anisotropic effects is com-
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where the right-hand side is the Landau collision opera-
tor defined with the following parameters:
UBY=713—(u28By—uﬁuy), with ug=vg—vp .

The other quantities have their usual meaning. Let us
perform some approximations used in our model. In the
left-hand side of Eq. (5) the ion fluid velocity is neglected
(Vionic <<v,). In the right-hand side we expand the tensor
Up, with respect to the ion velocity and keep the leading
terms, ie., Ug, =v _3(028&,—1)31)7, ). We neglect the
electron-electron correlations (high Z limit) and the ener-
gy exchange between electrons and ions. This gives us
the following simple Landau collision operator (pitch an-
gle scattering operator) which describes the momentum
exchange between the ions and the electrons:

4
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(with the subscript in f dropped). It should be pointed
out that this operator does not explicitly conserve the
momentum, the ions being assumed fixed.

Let us now derive the linearized VL equation. For this
we set

f=f,+8fexp(—iowt +ik-r)
and
(E,B)=(E,,B,)+(8E,5B)exp( —iwt +ik-r) ,

where k is a real wave vector and w a complex frequency.
8f, 8E, and 6B are the perturbed quantities and f, E,,
and B, the unperturbed ones. Furthermore, we assume
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vg dv m M;
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puted for both modes by using the Chapman-Enskog ex-
pansion to compute the secular distribution function. A
summary of the whole work will be, finally, presented and
will be followed by a discussion about some specific fu-
ture extensions of the present results.

II. THE MODEL
AND ITS CONDITIONS OF VALIDITY

In this section we deal with the normalized Vlasov-
Landau equation and some approximations used in our
model. We also discuss the high-frequency validity of the
Vlasov-Landau model by comparing it with the Dawson-
Oberman model (referred to hereafter respectively as VL
and DO models).

A. Vlasov-Landau equation and approximations

The VL Equation for the electrons in the ion frame
reads [13]

(5)
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that the local approximation, kL >>1, is fulfilled (L is a
characteristic plasma scale length). With the use of these
approximations we obtain the following VL equation
written in the frame (u,w,z) such as k=kw (see Fig. 1):

(Q+pug —C )81 (»,Q,q)=5S(5E,8B,1,) , %)

where the ion-electron collision operator and the source
term are given, respectively, by
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FIG. 1. Geometry of the first and the second mode (respec-
tively k,E,,B, and k,E,,B,) in the (%,9,2) frame. The (4,%,%)
frame is obtained from the (X,¥,2) one by an a rotation with
respect to the Z axis. The density and the temperature inhomo-
geneities are along the X axis.
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and

s

~ .9
8S (8£,8B, f,)=4V 6y? aj}:

8§+2y1/2%><5B

The variables defined as dimensionless quantities are
y=mv?/2T, Q=—iwdV2Ay>?/v,, q=i8\yp’k ,
8E=V"2/3(ery/T)8E, and 8B=V2/3(eAy/mv,)sB .

The spherical angular variables are

v vz

—_w 24
=-— and Ccos - 5 .
p=- (i X (1—122)

We can note that the source term S involves the per-
turbed electromagnetic fields 8§ and 88 which are related
by the Maxwell equations’ to the perturbed distribution
function.

B. High-frequency validity of the model

It is well known that the Landau collision operator is
derived from the first two Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) equations which involve the
reduced one-particle and two-particle distribution func-
tions. The other basic assumption (Bogoliubov hy-
pothesis) is that the two-point correlation function (which
describes the collisions) relaxes on a time scale very short
as compared to the time scale on which the reduced one-
particle distribution function f relaxes. Therefore, the
VL model should not be rigorously valid in the high-
frequency limit (o, Zw,). In order to describe high-
frequency phenomena some authors [5—7] have used
more accurate models where the Bogoliubov hypothesis
is not used. One of these models, DO [7], which de-
scribes exactly the ion-electron collisions and uses the
same approximations (electron-electron correlations
neglected and ions at rest) as the present model, will be
used here for comparison. The DO model considers that
the electrons are governed by the Vlasov equation with
an electric field, that is, the sum of an oscillating part and
an electrostatic part generated by the discrete ion distri-
bution. The ion-ion correlations are assumed to be exter-
nally given. In Ref. [14], it is shown that for low frequen-
cy (0, <<w,) the DO collision operator takes the Landau
form if one assumes the ion-spectrum turbulence isotro-
pic and the electronic mean free path [Eq. (4)] to read

e

where ¢ (k)=S(k)/er(k,0) is the ion microscopic tur-
bulence defined by
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If we assume a thermal ion correlation level, i.e.,
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Eq. (9) gives Eq. (4). In the high-frequency limit
(0, Zw,), applied to the computation of ponderomotive
effects [14], the two models differ qualitatively by a factor
called the generalized Gaunt factor [Eq. (61) in Ref. [14] ]
which takes into account the high-frequency effects. This
factor is approximately one for w,~w®, and for large
Coulomb logarithms. This value is in general equal to
one, however, it no longer takes this value in the cases
where the ion acoustic turbulence is far from the thermal
level and for w, slightly exceeding w, in a strongly dom-
inated collision regime (v-V <<v,/Ay). In Sec. VB we
corroborate the good agreement between those two mod-
els in the high-frequency range by comparing the damp-
ing rates.

III. VLASOV-LANDAU COLLISIONAL PROPAGATOR

The reduced VL equation [Eq. (7)] admits the formal
solution

O8f (u,0,y)=G (u,9)5S(88,88B, f;) ,

where G (u,¢)=(Q+ug —C,)~ ! is the two-dimensional
(2D) VL propagator. By using continuous fractions, used
before for the computation of the plasma dispersion func-
tions [15], we can explicitly compute the propagator
G (u,4) on the basis of spherical harmonics Y™ (u,¢)
that are the eigenfunctions of the Landau collision opera-
tor C, [Eq. (8)]. Let us briefly outline the computation
method for this propagator. The expansion of the per-
turbed quantities is made on the Y\"(u,¢) basis:
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whereas the unperturbed distribution function is expand-
ed on the Legendre polynomial basis P, (v, /v):
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By projecting Eq. (7) on the associated Legendre polyno-
mial sub-basis corresponding to a given m, we obtain for-
mally 87'=G!"!(4)85"™. The components 57 and
8S'™ are two infinite column vectors and the subpropa-
gator G""l(y) a symmetric infinite square matrix. Using
the standard recurrence relation [16] of the continuous
fractions, the (n,m) distribution function component can
be expressed after some lengthy calculations as

8 (n)=3 Glrlssim, (11
i=0
where
G,lu'-"‘(n >i)=( _q)n*iVilr*_nl1 ... VrllmlFl_Iirll A F'LmlGiiimJ
and
GiIimIZDIJmIFBmI e F,J"" .

The D,-I"1| quantities are defined by
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D™= [Q+(i +|m|)i +|m|—1)]D)"|

—¢*vi7 D)7,

viml={ii +2|m|)/[4(i +|m|2—1]}17%,
i=0,1....

The continuous fractions are defined by the following re-
cursive relation:

FM=[Q+G+|m])i+1+]|m|)
—qX v/ 2 Fm (12)

In the next section we explicitly derive the 8" and 5f"
components, which are useful for the computation of the
Maxwell equations’ source terms (i.e., the charge and the
current densities).

IV. DIELECTRIC FUNCTIONS

Let us now derive the longitudinal and transverse VL
dielectric functions valid in the whole k range. In the
standard notations the dielectric functions are written

2
- @p e ViV Ofy
ey(k,0)=8;—i— [ “G—F—dv, (13)

with the normalization condition f tefdv=1. Gis the
propagator which takes, in the collisionless limit, the

oV 87 /3v}te fowy(ﬁf‘l”—ﬁf‘l_”)dy —iv73/2

and
SE,=(w/kv,)6B

Thus from Eq. (13) we obtain the following transverse
dielectric functions:
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where 8/ and §f{*! are functions defined by Eq. (11).
Equations (14)-(16) are the semicollisional VL dielectric
functions. We note that the truncation of §f( and
8tV at any given order is equivalent to the truncation
of the unperturbed anisotropic distribution function f;.
As regards the continuous fractions, the truncation is
equivalent to the expansion of the dielectric function with
respect to the parameter (kv, /o, ).

ec?\

well-known form
G=(—iw+ik-v)"!

We assume that the longitudinal and transverse modes
propagate in an inhomogeneous plasma (n(x),7T(x)),
with a wave vector k=kw (Fig. 1). For the electrostatic

wave SE=8Ew, the normalized Poisson equation is
16Vamv,e?A3p? ..
SE=———_* 1728 £(0) g
‘/3m Goq f() y fO y

We deduce from Eq. (13) the longitudinal dielectric func-
tion

5/¢”
SE

N 16V 40,6022 ..
Vi3mey 0

€= dy . (14)

We now consider the electromagnetic wave. Taking the
wave vector k in the x-y plane for symmetry considera-
tions, we define one mode with the magnetic field along
the z axis and the other one with the magnetic field in the
x-y plane (see Fig. 1). Let us call them mode 1 and 2, re-
spectively. For mode 1 the Faraday and Ampere laws are
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and

SE,=—(w/kv,)0B .

For mode 2
S
sE,=—v3/2 | Y714 |5p
8eAyy

V. MAXWELLIAN DISPERSION RELATIONS

In this section we deal with the semicollisional disper-
sion relation of the Langmuir and electromagnetic waves
in a Maxwellian plasma, ie., fi=fy=(m/
27T)*%exp(—y). Therefore we neglect for the moment
anisotropic effects, which will be considered in the next
section. The explicit derivation of the perturbed com-
ponents’ distribution functions for both modes gives

80 = 4V'87/3qy*FLF0(Q,q)
X (m /2wT)?exp( —y)SE,

w

and
570 =—i8Vay F(Q,q)(m /27T)* *exp(—y)BE, ,

where F{?, F{', and F\” are continuous fractions defined
by Eq. (12). The derivation of isotropic dielectric func-
tions is straightforward from Egs. (14)-(16):
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We note that for isotropic plasmas, €r, =€r,- We have

checked that for spatially uniform modes the relation
€;.(0,0)=€r(0,w) is fulfilled. Now from Egs. (17) and
(18) we can deduce the dispersion relation for the Lang-
muir and electromagnetic waves, which are valid in the
whole collisionality regime, by using the equations

€ (k,0)=0 (19)
and

er(k,0)=(kc/w)? . (20)

A. Langmuir dispersion relation

First, let us consider the dispersion relation in the col-
lisional and the high-frequency (kv, /w, <<1) approxima-
tions. The expansmn of the continuous fractions’ prod-
uct F'F up to the fourth order with respect to param-
eter kv /co gives

2 4
- 3 3
FOpO—=_qg-2|14+=2 |2 | 42| 4
ot r 5109, 71Q,
2 6 g 2
+2i03 (14042 |- L | +2r | L
s Q, 50| Q,
4 4
g Sr | 4
+3 +=r |-+
Q, 77 |Q,

The notation used is Q=Q,+iI". Keeping the real part
of Eq. (19) we obtain the usual high-frequency Langmuir
dispersion relation

©,=w,[1+3(kAp ) +6(kAp)*+ -+ 1172, @21

The imaginary part of Eq. (19) gives the collisional damp-
ing rate

yL=— [1—=2(kAp)P—3(kAp)*+---1. (22)

3\/277')»0
We recover exactly the result deduced in Ref. [10], where
the propagator expansion method has been used and ap-
plied to the Vlasov-Balescu-Lenard kinetic equation.
This similarity is due to the fact that both Landau and
Balescu-Lenard operators are of the Fokker-Planck type;
therefore, when applied to Maxwellian plasmas, their
linearized forms are equivalent. In the low-frequency
limit (kv, /w, >>1) the results are more straightforward:
The real part of Eq. (19) describes the static shielding of
the ionic potential by electrons:

Re(er )=1+(kAp) 2.

The imaginary part gives, in the collisional approxima-
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tion the quasistatic conductivity, i.e., 0 =€yw,Im(e; ). In
this approximation Im(F{"’F{®)=1/2Q,. Hence, substi-
tuting this result in Eq. (17), we find

64V 2med T2
eV'm In(A)Z

Thus we recover the high Z Spitzer-Harm [17] conduc-
tivity. The damping rate deduced from Eq. (19), which is
valid for all the collisionality regime, is

(0pro/Ap) [ 0“’ y2exp(—y)Re(FY))dy
fowy 2exp( —y )Im(FfJO) )dy

(ho/Ap) [ “y7expl

o= (23)

Yo=
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—y)Re(FE,O'V) )dy

X 1'_ ) ’
fo y2exp(—y)Im(F )dy
(24)
where the continuous fractions used are defined as
F{9=T Re(F{*")+Re(F{*)+i Im(F®) ,
with
Im(F{?)= [4V2 72— 64(kry)2y*
Cl)p D
-1
(14172 Im(F© )
4(1+1)2—1 & ’
Ao
Re (F(O 'y) [Im(F(O) ]2 4‘/2)/'3/2
Ap
2.4
+ 64(1 +12) y (k)»o)z
41 +1)—1
XRe(F%Y)) |,
and
Re(F{®")=[Im(F/)]? l<1+1)+§4—‘1i%—<kxo>2
41 +1)y—1
XRC(FIOV))

In the intermediate regime we have numerically comput-
ed (Fig. 2) the damping rate [Eq. (24)] with respect to the
parameter kA, for different collisionality parameters
(Ag/Ap). We emphasize the continuous transition be-
tween the asymptotic collisional limit and the collision-
less one characterized by the resonant wave-particle ener-
gy transfer. In the usual approaches the resonant Landau
effect can be studied in isolation and appears naturally as
a pole in the damping rate ;. Here the Landau and the
collisional damping are intimately mixed and it is impos-
sible to isolate the respective contribution. However, the
Landau damping is revealed by a peak of Re(F>") at
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the resonant velocity y, =(w, /kv,)?/2. We have checked
that this peak is strongly enhanced when the phase veloc-
ity decreases due to the correlated increase of the reso-
nant electronic population. Of course the relative impor-
tance of the resonant Landau effect increases with A, (low

Y g
(@)

0.2 K\,

FIG. 2. Longitudinal dimensionless damping rates ¥ /w, vs
kAp for different values of the collisionality parameter Ay/Ap.
(a) Aq/Ap=10,30,50,100,200,400,600,800,1000; (b) Ay/Ap
=10% 2X 10% 4X 10% 6X10% 8X10% 10°. The dashed line cor-
responds to the collisional contribution to the damping rate ob-
tained from Eq. (22). As expected, the collisionless domain (in
kAp space) increases with Aq/Ap.
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collisional regime) as displayed in Fig. 2.

Our numerical results (Fig. 2) are very close to those of
Ref. [10]. However, our results do not rely on the restric-
tive condition g <<1 of Ref. [10] [corresponding to
Apdm/AgIn(A)Z <<1 in our notation], which is required
for the iterative method used there to converge. There-
fore they remain valid for strongly collisional plasmas
(Ap /Ay<1) which extend substantially the range of va-
lidity of the present model.

B. Transverse dispersion relation

In the high-frequency approximation the continuous
fraction F)!) reads

2 2

_ 3 q
FV=072|2+r+2|-L | +=r|-L
0 r Q, 57| Q,
4 3 4
q q
+2 |4 | +=r|ZL
o | "7 |a
4
- 11| ¢ 3 q
+iQ 1+ — || o |2 .
=5 5|0, 35 | Q, ]

Isolating the real part of Eq. (20) we deduce the real part
of the frequency:

0, = w,[1+(kApS)? ]/
X {14+ (kAp?[1+(kApS)?] 2
+ (kAp) 1+ (kApS)?] 3

X[3—(1+(kApS)P] I+ -+ }172,

S=—t=—
Ap  VT(eV)

(l;=c /o, is the collisionless skin depth). The imaginary

part of Eq. (20) gives us the semicollisional transverse
damping rate:

Ymax 3 (1,)
=320, /Ap fo y3Re(FLPY) exp(—y)dy
Yz ¥ max

3IV2r+ 32)"0/)‘0 fo y3Re(F{,"’/) )exp( —y)dy

>

Yr

(25)
where
F{V=TRe(F{"")+Re(F"")+i Im(F{") ,
with

4“3 M@, |3,

Im(FV)=
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— 64(kAy)y*
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Re(F{")=[Im(F{")]? | 4V2p*/*—=
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64(1 +1)(1+3)p*
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X (kAg)’Re(FLY))
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and

Re(F{")=[Im(F{")]* | (1 + 1)1 +2)

64(1 + 1)1 +3)p*
+
41 +2)*—1

X (kAy)?Re(F/LY)

The upper limit y_,, of the integrals in Eq. (25) is taken
as (2y ., 02) 72 <c in order to avoid the unphysical con-
tribution of the Landau damping to high-frequency trans-
verse modes. In the high-frequency approximation Eq.
(25) reads

2

_ v:a 2
yT——m[ 1+(kaAp)(2—2a")
+(karp)X(8—11a%+6a*)+ -+ ],
where
a=[1+(kApS)*] 12, (26)

This result is original, as it incorporates for the first time
corrections due to the thermal effects. We have checked
numerically that for kA, <0.3, Eq. (25) gives the same
result as Eq. (26) with a precision always better than 1%.
For this reason the results do not need to be depicted on
a graph for this low kAp range while for the higher k’s,
more work is needed. In the low-frequency range the re-
sults, applied to Weibel instabilities, are widely discussed
in Ref. [11]. Let us now compare our results with those
obtained from the DO model. The DO model uses the
Vlasov-Poisson set of equations with a discrete ionic dis-
tribution charge. The ion-electron collisions being exact-
ly defined, this model may describe physical phenomena
at any time scale. Keeping the leading terms (we neglect
the thermal corrections) the ratio of the DO to VL [Eq.

(26)] damping rates is |
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Ypo I
20 = = 27
where

[=—=[" A d
Vi Y twin p{[(0 /0, ) +27°+27°T 1> +47°A%) e
(28)

with n=w/V2kv, and T'(n)—iA(n) being the Fried and
Conte [18] function. The argument of the Coulomb loga-
rithm corresponds to the ratio of the maximum to the
minimum impact parameter, i.e., A=p_ .. /p.... In the
classical approximation (nondegenerate plasma electrons)
Pmin corresponds to the minimum distance approach, i.e.,
Pmin =Ze?*/47e,T and for degenerate electrons, p,;,, cor-
responds to the thermal de Broglie wavelength
Ape=h /(2rmT)"/? and for which Ay, > Ze? /4me,T. The
maximum impact parameter corresponds to the Debye
length, i.e., pp, =0, /@,. In the high-frequency approxi-
mation, collisions at large distances have a slow time
scale as compared to the rate of oscillation of electrons in
the field. This tends to reduce the efficiency of the col-
lision. Roughly [7], we can take into account these high-
frequency effects by setting p ., =v,/®,. The numerical
comparison [Eq. (27)] gives identical results for low-
frequency waves (0, <<w,). For high-frequency waves
(0, Zw,) we obtain a qualitatively good agreement.
Indeed, for 0, =0, the precision is better than 1%.
When o, increases the discrepancy between the two re-
sults increases but remains relatively moderate in a large
range of frequency values: For w,=10w, and for an ex-
tremely large value w,=100w, the precision is, respec-

tively, about 3% and 10%.

VI. ANISOTROPIC EFFECTS

In this section we study the contribution of a weak ve-
locity anisotropy induced by the spatial plasma inhomo-
geneity along the x axis to the high-frequency dielectric
functions. For this, let us expand the unperturbed distri-
bution function on the Legendre polynomials’ basis up to
the first order. That is sufficient to compute the leading
anisotropic corrections:

i) =F00)+V 3, /o) f () .

After computing explicitly the source terms S;**!), the
use of Egs. (14)-(16) gives

25617\/51),1(750)12, w arl®
— P AP0 9/2 (0 (0) s
e=1 3 fo Yy °Fy Fy a dy
167V2/3v,0%sin(@)rg o« a | £
oy ]t(p fo p172F0) 5}’fsm+2y5/2‘a; yi/z dy , (29)
167w v A, arl®  2v6ku,sin(a)
=1—j— P tT0 [ (1) 3s ! 5/2 (1)
er=1—i 30 fo [Fo 4y 3 o Yo
(1
32V 3sin(a) n2pmpn 9 | JIs
+—5—kk0y Fy'F —a—; S dy , (30)
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where

€r=€r =€, .
From Egs. (19) and (20) we can deduce straightfor-
wardly the dispersion relations which contain both
thermal and anisotropic corrections. Assuming the plas-
ma very close to the local thermodynamic equilibrium
(fO =f,, and f{V/fr ~€), we obtain, after some alge-
bra, a negligible anisotropic correction (kv,/w,)*M? for
the real frequency ,(k). We have used the following no-
tation: M= f of Dyndy. For the damping rates the an-
isotropic contributions will appear under the form
w,(eM?)/kv, and (e¥M3)~(eM2*?). In Ref. [11],
where the quasistatic approximation (w, /kv,)~ € is used,
both contributions of the anisotropies are of the same or-
der of magnitude, of order €%. It should be noted, howev-
er, in the expression of the instability rate, the moment of
) is of an order much greater than that of
f(p +2>>n), hence, only the contribution of f(?
strongly dominates, while in the present calculation, only
the first term, of order ¢, in £\ is kept and the damping
rates are found as
2

v, =2 kv,
’)/ e —_
L 3vama, ®,
;172
+ 4% kv,“a)p”lsin(a)
XM{V24 - l , 31
2
v,a ) )
7T=—m[l+(2—20 )(kakD)
0

+ (127) 2ka A pv  sin(a)
XM{V24 -], (32)

We note that, when the wave vector k is perpendicular to
the inhomogeneity direction (a@=0), the anisotropic
corrections vanish as expected. Let us compare explicitly
the thermal corrections to the anisotropic ones. For this,
we use the Chapman-Enskog anisotropic function [19]:

4ry
V3L,

My)=

yH4—ylexp(—y) .

We recall that this solution is valid for mean free paths A,
much smaller than the characteristic temperature scale
length L,y=T|dT/dx|™", i.e., Ay/L;y~€. We deduce
thus, respectively, the anisotropic terms in Egs. (31) and
(32):

WV2or
4

sin(a)(kApAy/Ly) ,

9‘22” sin(a)(kaApho/Ly) -
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Using the high-frequency approximation [kAp
=(kv,/w,)~€ and kalp=(kv,/w,)~€] and the

Chapman-Enskog approximation [(A,/Ly)~€], we ob-
serve that both the thermal and the anisotropic correc-
tions are of the same order, €2. Therefore, for weak an-
isotropic plasmas we have to take into account both
corrections. For strongly inhomogeneous plasmas
[(Ag/L7)~0.1], the nonlocal effects [20] tend to reduce
the distribution function moments M. Hence the
correction terms decrease whereas the damping rate
[YL,TN(M(I)/Z )~ 1] slightly increases. We expect that in
the plasmas with strong anisotropy the corrections due to
anisotropic effects should be much higher than those of
the thermal effects.

VII. SUMMARY

In this paper we have derived from the Vlasov-Landau
equation the transverse and the longitudinal electric func-
tion, valid for the whole collisionality range. We have
deduced the damping rates [Egs. (24) and (25)] for isotro-
pic plasmas. For Maxwellian plasmas, in the asymptotic
high-frequency and collisional approximations, an expli-
cit form for these damping rates is computed with
thermal corrections up to the fourth order. In the low-
frequency limit, the Spitzer-Harm [17] conductivity is
recovered and for the transverse damping rates, a good
agreement is obtained with the high-frequency Dawson-
Oberman model [7]. We have also numerically computed
longitudinal damping rates versus the wave number k for
different values of the collisionality parameter Ay/Ap.
We have pointed out the continuous transition between
the collisional and the Landau collisionless limit. The
effects of the anisotropy of velocity space on the dielectric
functions are studied. It is shown that those effects con-
tribute to the same order as the thermal effects for the
collisional damping rates. An extension of the present
work is in order. A quantitative analysis of the high kA
values would be of some interest in the whole collisional
range for both high-frequency transverse and longitudi-
nal waves as well as low-frequency ion acoustic waves
[21]. Moreover, the strong anisotropy effect on the plas-
ma modes is also of interest just like the ion acoustic in-
stability in the semicollisional regime.
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